118 research outputs found

    Dynamic Characterisation of Fibre-Optic Temperature Sensors for Physiological Monitoring

    Get PDF
    Fast, miniature temperature sensors are required for various biomedical applications. Fibre-optics are particularly suited to minimally invasive procedures, and many types of fibre-optic temperature sensors have been demonstrated. In applications where rapidly varying temperatures are present, a fast and well-known response time is important; however, in many cases, the dynamic behaviour of the sensor is not well-known. In this article, we investigate the dynamic response of a polymer-based interferometric temperature sensor, using both an experimental technique employing optical heating with a pulsed laser, and a computational heat transfer model based on the finite element method. Our results show that the sensor has a time constant on the order of milliseconds and a −6 dB bandwidth of up to 178 Hz, indicating its suitability for applications such as flow measurement by thermal techniques, photothermal spectroscopy, and monitoring of thermal treatments

    Precision-microfabricated fiber-optic probe for intravascular pressure and temperature sensing

    Get PDF
    Small form-factor sensors are widely used in minimally invasive intravascular diagnostic procedures. Manufacturing complexities associated with miniaturizing current fiber-optic probes, particularly for multi-parameter sensing, severely constrain their adoption outside of niche fields. It is especially challenging to rapidly prototype and iterate upon sensor designs to optimize performance for medical devices. In this work, a novel technique to construct a microscale extrinsic fiber-optic sensor with a confined air cavity and sub-micron geometric resolution is presented. The confined air cavity is enclosed between a 3 μm thick pressure-sensitive distal diaphragm and a proximal temperature-sensitive plano-convex microlens segment unresponsive to changes in external pressure. Simultaneous pressure and temperature measurements are possible through optical interrogation via phase-resolved low-coherence interferometry(LCI). Upon characterization in a simulated intravascular environment, we find these sensors capable of detecting pressure changes down to 0.11 mmHg (in the range of 760 to 1060 mmHg) and temperature changes of 0.036°C (in the range 34 to 50°C). By virtue of these sensitivity values suited to intravascular physiological monitoring, and the scope of design flexibility enabled by the precision-fabricated photoresist microstructure, it is envisaged that this technique will enable construction of a wide range of fiber-optic sensors for guiding minimally invasive medical procedures

    Fibre optic intravascular measurements of blood flow: A review

    Get PDF
    Fibre optic sensors are well suited to measuring fluid flow in many contexts, and recently there has been burgeoning interest in their application to direct, invasive measurement of blood flow within human vasculature. Depending on the sensing method used and assumptions made, these intravascular measurements of blood flow can provide information about local blood velocity, volumetric flow, and flow-derived parameters. Fibre optic sensors can be readily integrated into medical devices, which are positioned into arteries and veins to obtain measurements that are inaccessible or cumbersome using non-invasive imaging modalities. Measurements of flow within coronary arteries is a particularly promising application of fibre optic sensing; recent studies have demonstrated the clinical utility of certain flow-based parameters, such as the coronary flow reserve (CFR) and the index of microcirculatory resistance (IMR). In this review, research and development of fibre optic flow sensors relevant to intravascular flow measurements are reviewed, with a particular focus on biomedical clinical translation

    Optical interferometric temperature sensors for intravascular blood flow measurements

    Get PDF
    Direct and continuous measurements of blood flow are of significant interest in many medical specialties. In cardiology, intravascular physiological measurements can be of critical importance to determine whether coronary stenting should be performed. Intravascular pressure is a physiological parameter that is frequently measured in clinical practice. An increasing body of evidence suggests that direct measurements of blood flow, as additional physiological parameters, could improve decision making. In this study, we developed a novel fibre optic intravascular flow sensor, which enabled time-of-flight measurements by upstream thermal tagging of blood. This flow sensor comprised a temperature sensitive polymer dome at the distal end of a single mode optical fibre. The dome was continuously interrogated by low coherence interferometry to measure thermally-induced length changes with nanometre-scale resolution. Flow measurements were performed by delivering heat upstream from the sensor with a separate optical fibre, and monitoring the temperature downstream at the dome with a sample rate of 50 Hz. A fabricated flow sensor was characterized and tested within a benchtop phantom, which comprised vessels with lumen diameters that ranged from 2.5 to 5 mm. Water was used as a blood mimicking fluid. For each vessel diameter, a pump provided constant volumetric flow at rates in the range of 5 to 200 ml/min. This range was chosen to represent flow rates encountered in healthy human vessels. Laser light pulses with a wavelength of 1470 nm and durations of 0.4 s were used to perform upstream thermal tagging. These pulses resulted in downstream temperature profiles that varied with the volumetric flow rate

    Localization of Interaction using Fibre-Optic Shape Sensing in Soft-Robotic Surgery Tools

    Get PDF
    Minimally invasive surgery requires real-time tool tracking to guide the surgeon where depth perception and visual occlusion present navigational challenges. Although vision-based and external sensor-based tracking methods exist, fibre-optic sensing can overcome their limitations as they can be integrated directly into the device, are biocompatible, small, robust and geometrically versatile. In this paper, we integrate a fibre Bragg grating-based shape sensor into a soft robotic device. The soft robot is the pneumatically attachable flexible (PAF) rail designed to act as a soft interface between manipulation tools and intra-operative imaging devices. We demonstrate that the shape sensing fibre can detect the location of the tools paired with the PAF rail, by exploiting the change in curvature sensed by the fibre when a strain is applied to it. We then validate this with a series of grasping tasks and continuous US swipes, using the system to detect in real-time the location of the tools interacting with the PAF rail. The overall location-sensing accuracy of the system is 64.6%, with a margin of error between predicted location and actual location of 3.75 mm

    Design of a series visco-elastic actuator for multi-purpose rehabilitation haptic device

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variable structure parallel mechanisms, actuated with low-cost motors with serially added elasticity (series elastic actuator - SEA), has considerable potential in rehabilitation robotics. However, reflected masses of a SEA and variable structure parallel mechanism linked with a compliant actuator result in a potentially unstable coupled mechanical oscillator, which has not been addressed in previous studies.</p> <p>Methods</p> <p>The aim of this paper was to investigate through simulation, experimentation and theoretical analysis the necessary conditions that guarantee stability and passivity of a haptic device (based on a variable structure parallel mechanism driven by SEA actuators) when in contact with a human. We have analyzed an equivalent mechanical system where a dissipative element, a mechanical damper was placed in parallel to a spring in SEA.</p> <p>Results</p> <p>The theoretical analysis yielded necessary conditions relating the damping coefficient, spring stiffness, both reflected masses, controller's gain and desired virtual impedance that needs to be fulfilled in order to obtain stable and passive behavior of the device when in contact with a human. The validity of the derived passivity conditions were confirmed in simulations and experimentally.</p> <p>Conclusions</p> <p>These results show that by properly designing variable structure parallel mechanisms actuated with SEA, versatile and affordable rehabilitation robotic devices can be conceived, which may facilitate their wide spread use in clinical and home environments.</p

    Molecular Evolution of the Two-Component System BvgAS Involved in Virulence Regulation in Bordetella

    Get PDF
    The whooping cough agent Bordetella pertussis is closely related to Bordetella bronchiseptica, which is responsible for chronic respiratory infections in various mammals and is occasionally found in humans, and to Bordetella parapertussis, one lineage of which causes mild whooping cough in humans and the other ovine respiratory infections. All three species produce similar sets of virulence factors that are co-regulated by the two-component system BvgAS. We characterized the molecular diversity of BvgAS in Bordetella by sequencing the two genes from a large number of diverse isolates. The response regulator BvgA is virtually invariant, indicating strong functional constraints. In contrast, the multi-domain sensor kinase BvgS has evolved into two different types. The pertussis type is found in B. pertussis and in a lineage of essentially human-associated B. bronchiseptica, while the bronchiseptica type is associated with the majority of B. bronchiseptica and both ovine and human B. parapertussis. BvgS is monomorphic in B. pertussis, suggesting optimal adaptation or a recent population bottleneck. The degree of diversity of the bronchiseptica type BvgS is markedly different between domains, indicating distinct evolutionary pressures. Thus, absolute conservation of the putative solute-binding cavities of the two periplasmic Venus Fly Trap (VFT) domains suggests that common signals are perceived in all three species, while the external surfaces of these domains vary more extensively. Co-evolution of the surfaces of the two VFT domains in each type and domain swapping experiments indicate that signal transduction in the periplasmic region may be type-specific. The two distinct evolutionary solutions for BvgS confirm that B. pertussis has emerged from a specific B. bronchiseptica lineage. The invariant regions of BvgS point to essential parts for its molecular mechanism, while the variable regions may indicate adaptations to different lifestyles. The repertoire of BvgS sequences will pave the way for functional analyses of this prototypic system

    Public involvement in the priority setting activities of a wait time management initiative: a qualitative case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As no health system can afford to provide all possible services and treatments for the people it serves, each system must set priorities. Priority setting decision makers are increasingly involving the public in policy making. This study focuses on public engagement in a key priority setting context that plagues every health system around the world: wait list management. The purpose of this study is to describe and evaluate priority setting for the Ontario Wait Time Strategy, with special attention to public engagement.</p> <p>Methods</p> <p>This study was conducted at the Ontario Wait Time Strategy in Ontario, Canada which is part of a Federal-Territorial-Provincial initiative to improve access and reduce wait times in five areas: cancer, cardiac, sight restoration, joint replacements, and diagnostic imaging. There were two sources of data: (1) over 25 documents (e.g. strategic planning reports, public updates), and (2) 28 one-on-one interviews with informants (e.g. OWTS participants, MOHLTC representatives, clinicians, patient advocates). Analysis used a modified thematic technique in three phases: open coding, axial coding, and evaluation.</p> <p>Results</p> <p>The Ontario Wait Time Strategy partially meets the four conditions of 'accountability for reasonableness'. The public was not directly involved in the priority setting activities of the Ontario Wait Time Strategy. Study participants identified both benefits (supporting the initiative, experts of the lived experience, a publicly funded system and sustainability of the healthcare system) and concerns (personal biases, lack of interest to be involved, time constraints, and level of technicality) for public involvement in the Ontario Wait Time Strategy. Additionally, the participants identified concern for the consequences (sustainability, cannibalism, and a class system) resulting from the Ontario Wait Times Strategy.</p> <p>Conclusion</p> <p>We described and evaluated a wait time management initiative (the Ontario Wait Time Strategy) with special attention to public engagement, and provided a concrete plan to operationalize a strategy for improving public involvement in this, and other, wait time initiatives.</p

    Translation and validation of non-English versions of the Ankylosing Spondylitis Quality of Life (ASQOL) questionnaire

    Get PDF
    BACKGROUND: The Ankylosing Spondylitis Quality of Life (ASQOL) questionnaire is a unidimensional, disease-specific measure developed in the UK and the Netherlands. This study describes its adaptation into other languages. METHODS: The UK English ASQOL was translated into US English; Canadian French and English; French; German; Italian; Spanish; and Swedish (dual-panel methods). Cognitive debriefing interviews were conducted with AS patients. Psychometric/scaling properties were assessed using data from two Phase III studies of adalimumab. Baseline and Week-2 data were used to assess test-retest reliability. Validity was determined by correlation of ASQOL with SF-36 and BASFI and by discriminative ability of ASQOL based on disease severity. Item response theory (Rasch model) was used to test ASQOL's scaling properties. RESULTS: Cognitive debriefing showed the new ASQOL versions to be clear, relevant and comprehensive. Sample sizes varied, but were sufficient for: psychometric/scaling assessment for US English and Canadian English; psychometric but not scaling analyses for German; and preliminary evidence of these properties for the remaining languages. Test-retest reliability and Cronbach's alpha coefficients were high: US English (0.85, 0.85), Canadian English (0.87, 0.86), and German (0.77, 0.79). Correlations of ASQOL with SF-36 and BASFI for US English, Canadian English, and German measures were moderate, but ASQOL discriminated between patients based on perceived disease severities (p < 0.01). Results were comparable for the other languages. US English and Canadian English exhibited fit to the Rasch model (non-significant p-values: 0.54, 0.68), confirming unidimensionality. CONCLUSION: The ASQOL was successfully translated into all eight languages. Psychometric properties were excellent for US English, Canadian English, and German, and extremely promising for the other languages
    corecore